题意
给定一棵$n$个节点完全二叉树,$m$次询问,每次询问从$a$节点到其它所有节点(包括自身)的距离$L$与给定$H_a$之差$H_a-L$大于$0$的值之和
对整棵树从叶子节点到父节点从上往下预处理出每个节点到它的子节点的距离$d$并排序,因为每个节点最多有$\log n$个父亲,所以预处理时间复杂度为$O(n\log n)$
通过二分查找可以得到任意节点到子节点的满足条件的距离,对于每个询问,查询当前节点的子树权值和,并不断向树根转移,每次计算兄弟节点对应的权值和(相当于看作以当前节点为根重构树),直到转移到树根
时间复杂度$O((n+m)\log^2n)$
代码
#includeusing namespace std;typedef long long LL;int n, m, L[1000005], a, h, tmp, lch, rch, last;long long ans = 0;vector d[1000005];vector pre[1000005];LL query(int x, int h) { if(h <= 0) return 0; int p = upper_bound(d[x].begin(), d[x].end(), h) - d[x].begin(); return 1LL * p * h - 1LL * pre[x][p - 1];}int main() { scanf("%d%d", &n, &m); for(int i = 2; i <= n; ++i) scanf("%d", &L[i]); for(int i = n; i >= 1; --i) { d[i].push_back(0); lch = i << 1; rch = i << 1 | 1; if(lch <= n) { for(int j = 0; j < d[lch].size(); ++j) d[i].push_back(d[lch][j] + L[lch]); } if(rch <= n) { for(int j = 0; j < d[rch].size(); ++j) d[i].push_back(d[rch][j] + L[rch]); } sort(d[i].begin(), d[i].end()); pre[i].resize(d[i].size()); for(int j = 1; j < pre[i].size(); ++j) { pre[i][j] = pre[i][j - 1] + d[i][j]; } } for(; m; --m) { scanf("%d%d", &a, &h); ans = 0; tmp = a; last = 0; while(tmp) { if(h < 0) break; ans += h; lch = tmp << 1; rch = tmp << 1 | 1; if(lch <= n && lch != last) { ans += query(lch, h - L[lch]); } if(rch <= n && rch != last) { ans += query(rch, h - L[rch]); } h -= L[tmp]; last = tmp; tmp >>= 1; } printf("%I64d\n", ans); } return 0;}